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ABSTRACT 

Dynamical structures of nonlinear spinor and bosonic theories 

are studied in the framework of the 1/N expansion. It is shown that 

a wide class of four-fermion theories contains composite particles 

and that they can be cast into equivalent field theories with the 

so-called compositeness condition. With the formation of composite 

particles, the ultraviolet behavior of a large class of four-fermion 

theories is improved so that they become renormalizable and well- 

defined field theories beyond two (but less than four) dimensions in 

spite of their apparent nonrenormalizability in the conventional 

perturbation expansions. 
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I. INTRODUCTION 

Nonlinear spinor theories, as considered by Nambu and Jona- 

Lasinio, 
1 

have various composite particles or collective excitations 

of fundamental spinor fields. The chiral symmetric model of Nambu 

and Jona-Lasinio, which is based on an analogy with superconductivity, 

was originally proposed as a dynamical model of nucleons and pions. 

In this model pions are massless composite bosons associated with 

dynamical spontaneous breakdown of the chiral symmetry. Following 

the same idea, Bjorken’ and otb.ers3’ 4 studied the possibility that 

quantum electrodynamics can be constructed out of a four-fermion 

vector interaction. 

All composite particles are created as a result of interactions. 

The existence of composite particles is not manifest at the level of 

fundamental Lagrangians. This fact makes the study of the dynamical 

structure of theories involving composite particles difficult. 
5 

Fortunately, there is a useful and practical treatment of composite 

particles, which has been developed in connection with the study of the 

compositeness criteria of particles and which makes the dynamics of 

composite particles manifest at the Lagrangian level: Earlier works 

6 
of Jouvet, Salam ‘, Weinberg’ and others 9 showed that composite 

particles of certain field theories can be described in terms of equivalent 

field theories whose Lagrangians involve elementary fields corresponding 

to the above composite particles. In these equivalent theories some 
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physical parameters are constrained so that the wave-function and 

vertex renormalization constants associated with these elementary 

fields vanish; this constraint Z = 0 (the conpositeness condition) 

effectively turns the elementary particles into composite particles. 

This equivalence relation, however, has so far been studied only in 

certain (Hartree-Fock type) approximations ioWi2 since standard 

perturbation expansions (developed in powers of the coupling constant) 

fail to produce bound states to any finite orders. 

Recently, the i/N expansion scheme 
13 

has been extensively 

applied to the study of phase transitions and some other nonperturbative 

aspects 
14- 16 

of various field theories. For nonlinear spinor theories, 

in particular, the i/N expansion begins with a summation of bubble 

diagrams and is expected to preserve richer nonlinear features of the 

exact theory than standard perturbation expansions. Furthermore, 

as noted by Parisi 
17 18 

and Gross , in the i/N expansion some 

nonlinear spinor theories become renormalizable by power-counting 

beyond two dimensions where they are nonrenormalizable in standard 

perturbation expansions. It is therefore of interest to study the 

equivalence relation based on the compositeness condition in the 

framework of the i/N expansion. 

The purpose of this paper is to show that a wide class of nonlinear 

spinor (and bosonic) theories can be converted into equivalent composite- 

particle theories to each order in the i/N expansion. The limit Z + 0 
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in equivalent field theories serves to regularize the short-distance 

structure of original nonlinear field theories. This limit affects the 

renormalization counterterms, but not the renormalized Green’s 

functions when the original theories are renormalizable. It will be 

shown that in the i/N expansion scheme the particle spectrum and the 

renormalizability of nonlinear field theories can be studied by the 

construction of equivalent composite-particle theories. In the framework 

of the i/N expansion many of four-fermion theories turn out to be 

renormalizable and well-defined field theories under four dimensions. 

In Sec. II we consider, as an illustration, a simple O(N)-symmetric 

four-fermion theory and show that it is equivalent to a Yukawa theory 

with a composite boson in the i/N expansion scheme. In Sec. III we 

extend a similar analysis to other interactions : Four-fermion scalar 

or pseudoscalar interactions (both Abelian and non-Abelian) as well as 

Abelian four-fermion vector interactions produce bound states and 

become renormalizable under four dimensions within the i/N expansion 

scheme. Non-Abelian versions of vector four-fermion theories turn 

out to be equivalent to massive Yang-Mills theories with composite 

Yang-Mills fields in two dimensions in the i/N expansion. A bosonic 

theory (the CP 
N-1 

model’ 3 is also briefly discussed. Section IV is 

devoted to concluding remarks. 
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II. FOUR-FERMION INTERACTIONS 
AND EQUIVALENT WKAWA INTERACTIONS 

In this section we show the equivalence of a four-fermion theory 

and a Yukawa theory via the compositeness condition in the 1/N 

expansion scheme. 

Let us consider a set of N fermion fields +(x) = {$a(x)} (a = i,..., N) 

self-coupled through the O(N)-symmetric interaction: 

pF[+,T] = Ta (i 8 -M) +a+ $ G (Ta$a)2 , (2.1) 

where summation over a (a = I,..., N) is understood. The Gross-Neveu 

modelI corresponds to the two-dimensional version of the above model 

with M = 0. In the conventional perturbation theory, we develop per- 

turbation series expansions in powers of the four-fermion coupling 

constant G. On the other hand, in the 1/N expansion scheme, we 

regard G to be of order 1/N and arrange perturbation series expan- 

sions in powers of 1/N. For G> 0 the force between a fermion and an 

antifermion is attractive, and is therefore expected to give rise to a 

bound state composed of a fermion-sntifermion pair. As is well-known 

in the Gross-Neveu model 
14 

and as we shall see later, there in fact 

arises an O(N)-singlet scalar bound-state within the 1/N expansion. 

In general, the composite operator Ta$a develops a vacuum 

expectation value <Ta+‘> 
0’ 

which can simply be absorbed into the 
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fermion bare mass M-M - GcT’+~>~. Correspondingly, for conven- 

ience (though not essential 
20 

), we shall henceforth regard Ta+a in 

Eq. (2.1) as the normal ordered product :Ta+a: = ya$a - <Ta+aia>O, 

though not indicated explicitly. 

In order to generate the l/N expansion in a systematic way, let 

us introduce an O(N)-singlet scalar field o(x) and convert the 

Lagrangian (2.1) into an equivalent form 
14 

do,[+,T; ~1 = PF[+,Tl - + {mo - Wm)TaiCla12 

=~a(i$-M+go)+a -$m2a2 , (2.2) 

where G has been rewritten as G = g2/m2. For the 1 /N expansion 

g and m are regarded to be of order (l/N) 
112 

and WO”, respectively. 

We note that the i/N expansion for this model is generated successively 

by power-series expansions in g. The simplest way to see this is to 

contract + and T in (2.2). We then obtain the action expressed in 

terms of the e field alone 

S[o] =-iN Tr en(i#-M+go) - jdx ($m202), (2.3) 

where the logarithmic term is to be expanded in powers of gcr. [Since 

we regard Ta$a as ~v’li,~:, the term linear in o is missing in the 

expansion. ] The c2 term is zeroth order in l/N while ok terms 
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(k>3) are higher order in 1/N. This structure implies that the suc- 

cessive perturbation expansion in g gives the successive 1/N expsn- 

sion. 

The four-fermion theory (2.2) is renormalizable in two dimensions 

within the standard perturbation expansion. In the 1/N expansion 

scheme it becomes renormalizable by power-counting 
17,iS 

beyond two 

(but less than four) dimensions. On the other hand, the Yukawa theory 

based on the Lagrangian 

(2.4) 

is super-renormalizable under four dimensions. This theory looks 

quite identical to the four-fermion theory (2.2), except that the o-field 

kinetic-energy is missing inthe latter. Our task now is to relate this 

Yukawa theory to the four-fermion theory (2.2). 

The renormalization program for the Yukawa theory (2.4) is 

well-known. Renormalized fields and parameters are defined by the 

renormalization transformation 

112 112 -112 -i 
jl= (ZJ 4JR’ 0 = (Zo) UR’ g=zg z. ‘4 gR 

MZllr = MR+dM. m2ZG =mi 
2 

+6m . (2.5) 
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In terms of these renormalized quantities, the Lagrangian (2.4) is 

written as 

yy[hT;; ul = $ {Z+(i 6) - MR - 6M+Zg gR dR} $J: 

- -!i (rni + 6m2) o2 
1 2 

R +z z. @/JR) . (2.6) 

Under four dimensions only the mass counter-terms 6M and 6m2 are 

ultraviolet divergent while the renormalization constants Z 
+ 

,Zo and 

Zg are convergent to each order in perturbation theory in gR. As 

usual, they are determined according to some appropriate renormalization 

conditions. Typically, one can perform the mass and wave-function 

renormalizations of the o field by adjusting 6m2 and Zo so that the 

renormalized inverse CI propagator r(p 
2 

) satisfies the normalization 

condition 

r(p2) = p2 -mi + O((p2 - W2)‘) , (2.7) 

around an arbitrary subtraction point p2 = p2. In general, I’(p2) has 

the structure 

rtp2) = p2 - rni + 71(p2) + (Zc - i) P2 -6m2, (2.8) 
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where iT(p’) stands for the quantum-loop corrections and (Zo-i)p2 - 6m2 

is the renormalization counterterm. In terms of T(p2) the renormal- 

ization condition (2.7) reads 

6m2 = (Z 
0 - 1) P2+vP2), 

Z 
0 = I- (a/ap2)qp2). (2.9) 

As in the foregoing example, this Yukawa theory also has a calculable 

l/N expansion scheme if g is regarded to be of order (i/N) 112 . 

Analogously, for the four-fermion theory (2.2) we introduce the 

same renormalization transformation as (2.5). After this rescalmg, 

the Lagrangian (2.2) is rewritten as (2.6) with the last term $za(apuRj2 

missing. For this theory we define renormalizations by subtraction 

procedures corresponding to the renormalization counterterms generated 

by the resealing and employ the same renormalization conditions as for 

the Yukawa theory (2.4). 

The Yukawa theory (2.4) contains three independent 

parameters gR, mR and MR, apart from the degrees of freedom related 

to renormalizations, the subtraction point p2 and the ultraviolet cutoff 

AZ. (If we use the dimensional regularization, 
21 2 

A is replaced by the 

space-time dimension n. ) The four-fermion theory (2.1), on the other 
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hand, contains only two independent parameters G = g2/m2 and M. 

Now suppose that the three independent parameters of the Yukawa 

theory are constrained so that 

Zu kc,. mRs MR;~2,A2) = 0. (2.10) 

Under four dimensions. Zo is finite and independent of the ultraviolet 

cutoff A2. In the renormalized Yukawa theory, gR,mR, MR and uR(x) 

are finite quantities. With the constraint Zo = 0 on renormalized para- 

meters (the compositeness condition), the bare field u(x) vanishes 

while the bare parameters g and m become infinite. However, terms 

like m2c2 = (rni + 6m2)02 R and gu=(Z /Z )g o 
g 4~ RR 

remain as they are 

and the renormalized Yukawa Lagrsngian (2.6) turns into the four- 

fermion Lagrangian (2.2) re-expressed in terms of renormalized 

quantities. This argument for the equivalence of both theories is only 

heuristic. To prove this we shall first analyze the lowest order of the 

l/N expansion and then go to higher orders. 

To zeroth order in i/N, the self-energy TC(p2) defined by (2.8) 

is calculated from a diagram shown in Fig. f. In n dimensions 2i it is 

given by 
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where n F is defined by Tr(YpyY) = nFgpv; i. e. nF = k for k-component 

spinor fields. This a(p2) is ultraviolet divergent for n?2 and behaves 

like (-p2)’ !I-* for ~‘---a. To the same order, ZD is given by 

where 

Zo= 1-Ng;C(MR;p2), 

Ngi C(MR; p2) = (a/ap2) W2). 

(2.12) 

In accordance with the KSlle’n-Lehmann bound 22 0 5 Zo<l, C(MR; p2) ‘0. 

Therefore the compositeness condition Za=O is solvable for gR to this 

order; i.e. g;=~/[NC(MR;p2 )] ?O. As verified easily, imposing the 

normalization condition (2.7) in the original four-fermion theory plays 

the same role as solving ZD=O in the equivalent Yukawa theory. This 

establishes the equivalence of both theories to lowest order in i/N. 

The renormalized inverse CT propagator r(p2), defined by Eq. (2.8). 

grows like p2 for p2+ -m when Z, # 0. However, when Z,,=O, it 

behaves, for large p 
Pa 

like (-p2)‘n-i for 2 ~n<4 and like a constant 

(- -m2) for ni2. Correspondingly, in higher orders in the i/N 

expansion, the divergence structure of the Yukawa theory is different 

for Zo= 0 (the four-fermion theory (2.2)) and for Z -0 (the Yukawa 
CJ 

theory with the compositeness condition). For Z,, # 0 the theory is 

super-renormalizable under four dimensions. On the other hand, when 
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Zd= 0, the theory (with the lowest-order CJ propagator behaving asymp- 

totically like 1 /p 
n-2 

for 2 cn<4) is renormalizable 
17,23 

for 25ni4 

and is super-renormalizable for 15n<2. Note that the limiting pro- 

cedure Zo+O serves to regularize ultraviolet divergences. In general, 

the limit Z,,+O and the renormalization procedure (or equivalently, 

performing Feynman integrals) do not commute in the presence of ultra- 

violet divergences. Under one dimension (n<l) both the Yukawa theory 

(Zc + 0) and the four-fermion theory are finite theories (free of ultra- 

violet divergences); correspondingly, the Yukawa theory is not singular 

in the limit Zo -0 and reduces to the four-fermion theory. Suppose 

that, after renormalizations done under one dimension, we analytically 

continue both theories into higher dimensions. Then, as Z ‘0, some 
(J 

renormalization counter-terms of the Yukawa theory become singular 

for 15n<4, because the corresponding counter-terms of the four-fermion 

theory are ultraviolet divergent. [As Zo-0. Z +, Zg, 6M and 6m2 

become singular for 2 -cn<4 while only 6M becomes singular for 

1 sn <2. ] The renormalized Green’s functions of the Yukawa theory, 

on the other hand, are not singular in the limit Z -0 and are reduced 
cl 

to those of the four-fermion theory. This is because the latter theory 

is a renormalizable theory having convergent renormalized Green’s 

functions. Hence, terms singular as Zo-0 are absorbed into the 

renormalization counterterms. It will be clear that going to sufficiently 
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lower dimensions in the above argument is replaced by keeping the 

ultraviolet cutoff A2 finite in the cutoff language. 

We have. already seen that Zo = 0 is solvable to zeroth order in 

i/N. It follows from this that the Z. = 0 condition is solvable to each 

order in i/N since the higher-order corrections to Z 
0 

are power- 

2 
series in i/N; hence gR is uniquely ~determined by a power-series 

in 1/N. The solvability of the Zo = 0 condition, together with the 

above argument, shows that the Yukawa theory (2.4) becomes, via 

the compositeness condition Zc = 0, identical to the four-fermion theory 

under four dimensions (n<4) to each order in the i/N expansion scheme. 

It will be clear from the above argument that, if a (renormalized) 

equivalent field theory is not singular in the compositeness limit Z ‘0, 

the original theory is renormalizable. The renormalizability of the 

original theory can thus be studied by the constructionof its equivalent 

field theories. In most examples to be discussed in Sec. III, in 

particular, the coupling constant determined from the compositeness 

condition and the Green’s functions are power-series in i/N. In such 

cases, the renormalizability of original theories is seen simply from 

the solvability of the compositeness condition. 

The fact that Zc = 0 is solvable implies the existence of a bound 

state; in the original four-fermion theory, the propagator for the com- 

posite field mcr- (g/m)va+a develops a single pole, or equivalently, 

th,e u-field kinetic-energy term i (ac,cR)2 is effectively created by the 
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quantum fluctuations of fundamental fermions. According to our renor- 

malization condition (2.7), the mass md of this bound state is determined 

2 by setting l.t2 =mg =mo (1. e. on-mass-shell renormalization) in Z o=o 

[Eq. (2.10)]. This bound state is created to zeroth order in i/N. As is 

explicit in the equivalent Yukawa theory, the remaining higher-order 

corrections (in i/N) describe the interaction between this bound state 

and fundamental fermions. No additional bound states are created to 

finite orders in 1/N. In connection with the bound-state formation, it 

is important to check the signs of the bare four-fermion coupling con- 

stant G =g2/m2 and the renormalized one G R E g~/rn~. The attractive 

force between a fermion and an antifermion at the tree level (GR > 0) 

should remain attractive (G > 0) even when the quantum corrections are 

included according to the 1/N expansion. From (2.5) we learn that 

G = g2/m2 = (z iz 
g J, 

)2(i/Zm)(g~/m~), (2.13) 

where Z m = (rni + 6m2) /mi. Hence G and GR are of the same sign 

only when Z 
m 

>O, which is indeed the case for the attractive interaction 

G> 0: The renormalization condition (2.9) implies that 

‘rn 
=Zm+ (T(m~)/m~), 

where we have used the on-mass-shell renormalization convention 

(2.14) 

p2 =mi=mz. Therefore, when Zc=O, Zm > 0 if T(rnz)> 0. In the 
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present model, if we use the ultraviolet cutoff A, II a NgRA 2 W2),o 

(apart from en A’) to order (l/N)’ in n dimensions (n? 2). as verified 

easily. 
24 

On the other hand, since Zm > 0 for rnt>O, the repulsive inter- 

action G=g 
2 2 2 

/m ~0 (i.e. g2>0 and m2 CO) is inconsistent with m > 0 
0 

(although the Z o =0 condition is solvable for gk>O to zeroth order in 

i/N). This simply means that the repulsive interaction does not pro- 

duce a bound state. For the repulsive interaction the equivalence rela- 

tion based on the Zc = 0 condition does not make sense. 

Let us now study the four-fermion theory (2.1) in more detail on 

the basis of the equivalence relation. In three dimensions (where we 

setZ5 n=3 and n F = 2 in Eq. (2.11)) the compositeness condition Zo = 0 

determines, to zeroth order in t/N, the bound-state mass mc in terms 

of g 
R 

: 

2dWg;) 1 
112 

, 

1 M-i OD =- 
16 R i du [u- {mo/(2MR)j2- ie]-’ (1 +u)u-~‘~, (2.15) 

where in the last line we have performed a change of variable 

4Miu-rnt = (4Mi - mt) / (2~~1)~ along with an integration 

by parts. It is clear from (2.15) that the bound-state mass m decreases 
Ll 
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monotonically from 2MR to zero as gi varies from zero to 12rrMR; 

in particular, for weak coupling Ngi < <MR, 

rn: =4M2 
R 

[1 -4exp{-(16nMR/(giN))+i}] I (2.16) 

where in the exponent we have neglected terms that vanish as Ngfi/MR+O. 

In two dimensions, the Zo = 0 condition leads to 

i6%Mi/(Ngi)=Lm du[u-(mo/(2MR)}2-i.e]-iu-3’2(u-i)-112, (2.17) 

where we have set nF =n = 2 in (2.11) and made a change of variable 

4x(1-x)u = 1. With increasing gi from zero to 12vMk, the bound- 

state mass mo decreases from 2MR to zero; for weak coupling 

N g; C-C M;. 

m2= 4M2 R- (Ng;)/(W. (2.18) 
0 

Let us finally consider the four-dimensional case. In the presence 

of the ultraviolet cutoff A2 (or under one dimension) the four-fexnnion 

theory (2.1) is equivalent to the following Yukawa theory 

~y[LL,~;ul=~a(iB-M+go)*a-~m202+~(8~o)2-~ ~c3_$~o4, (2.19) 

with the compositeness condition 

zu=zx=zg =o, (2.20) 
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These renormalization constants are defined in the usual way (e.g. 

-312 
x=zAZo AR and 5=ZZ;‘+ 

E 
etc ). Here X 

.R and 5 R 

are regarded to be of order (1/N)+ and (i/N), respectively. Without 

the compositeness condition (2.20) this Yukawa theory is renormalizable 

in four dimensions. In four dimensions, gR, AR and 5, determined 

from the compositeness condition are ultraviolet-cutoff dependent; the 

A2 determines gR for fixed mo, i.e. Ngi= i/ln(A’). This means 

that the original four-fermion theory is still nonrenormalizable in the 

1 /N expansion scheme. In this scheme, however, the ultraviolet 

divergences remaining in the renormalized Green’s functions are only 

logarithmic and are far milder than they are in the conventional 

perturbation expansion in G. 
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III. OTHER EXAMPLES 

So far we have studied a simple four-fermion theory and its 

equivalent Yukawa theory in detail. We have especially noted (i) the 

existence of calculable i/N expansion schemes for both theories and 

(2) the solvability of the compositeness condition. These two points 

rely on the O(N) nature of the symmetry and are generally met in theories 

with an O(N) symmetry. In most cases point (2) is guaranteed by the 

KZll&-Lehmann spectral representation. 

It is straightforward to include some internal symmetries other 

than the O(N) symmetry into four-fermion theories. As long as the 

additional internal symmetry commutes with the O(N) symmetry, we 

can construct equivalent composite-particle theories in much the same 

way as in Sec. II. A non-Abelian version of the previous model is 

given by the following O(N) X SU(2) theory 

y= za - (ip - M)Qa+ $ G(za. r(k)Qa)2 , (3.1) 

where qa(x) = {+F (x)} is an O(N)- vector (a = i,..., N) SU(Z)-doublet 

(i = 1,2). The group matrices t (k) (k = 1,2,3) are the Pauli spin matrices 

and za.~ W *a z q (p) )ij vy is an O(N)-singlet SU(2)-triplet. As 

before, within the 1/N expansion, this theory is equivalent to the 

following O(N) x SU(2) Yukawa theory 
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-!?=Ta.(i~-M+gcr(k)T(k))~a+$(apc(k))2 _ im2(o(k))2, (3.2) 

with the compositeness condition Z o=O, where G = g2/m2 and Z. is 

the wave-function renormalization constant for the O(N)-singlet, 

SU(2)-triplet scalar field I (k= 1,2,3). To zeroth order in i/N, 

the mass mc of the O(N)-singlet, SU(Z)-triplet scalar bound-state is 

given by (2.15) or (2.17) with gk replaced by 2gi. 

It is possible to include a chiral symmetry as well. For example, 

the SU(2)L x SUM four-fermion theory 

1 
2 

G (T”Qa) + (5”. iy5 T(~) Qa)2 (3.3) 

produces, within the 1 /N expansion, four O(N)-singlet bound-states 

corresponding to the composite operators qaQa and za ’ iy5 T (Ww.a 

and becomes equivalent to an SU(2)L X SU(2)R liner c model (based on 

the (t , 9 ) representation). In this way, four-fermion scalar or 

pseudoscalar interaction theories (both Abelian and non-Abelian) become 

renormalizable under four dimensions within the i/N expansions, as 

long as they can be cast into equivalent super-renormalizable Yukawa- 

like theories. 

Let us next proceed to vector or axial-vector interactions. As 

a first example, we consider the O(N)-symmetric vector interaction 
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2 
p=Ta(ifi-M)+a-$E(Tayp+a) , (3.4) 

where a runs from one to N. We regard the coupling constant E to 

be of order i/N and write E =e2/k2 with e = 0((1/N)1’2). For E>O, 

a fermion attracts an antifermion. The Lagrangian (3.4) can be cast 

into an equivalent form 

2[‘4,T;A] =Ta(iy.i)-M+eAFyP)$a +? K 
1 2A2 

P’ 
(3.5) 

where AP(x) is an O(N)-singlet vector field. Since the Ta(ifi -M+ed)+’ 

term has a gauge-invariant structure, the quantum fluctuations of $I 

and ‘3; can effectively create a gauge-invariant kinetic-energy term 

( apAV - a yA1)2 for the vector field in the i/N expansion. Correspondingly, 

we construct an equivalent field theory by adding a kinetic-energy term 

-;(aPAV-“YAP)2 to (3.5), 

p[$.v,A] = Ta(ifi-M+eB)Ga +s K2A:- a (a A 
P ” 

- ayAJ2 , (3.6) 

and by imposing the compositeness condition 

ZA = 0, (3.7) 

on the renormalized parameters e 
R’ ‘R 

and M 
R’ 

Renormalized 

quantities are defined by 
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R, A’ = (ZA)i”A;, 
-i/2 

e = (Ze/Z$ZA eR 

K=Z -i/2 
A 

K~, etc. (3.8) 

As is well-known, Ze =Z and the last expression K = Z 
-t/2 

4J’ A 
kR implies 

the absence of the vector-meson mass renormalization; this follows from 

the Ward-Takahashi (WT) identities associated with the neutral vector- 

meson theory26 (3.6). In the so-called Proca form 
26 

(3.6). the free 

vector-meson propagator is given by { - gllv + (1 /sk)pppV} / (p2 - K:) and 

the theory is renormalizable only in two dimensions; according to power- 

counting, Ze =Z+ is logarithmically divergent while ZA is finite. It is, 

however, known that the neutral vector-meson theory is renormalizable 

up to four dimensions. In fact, with the Stiickelberg formalism, 
26 

the 

theory can be cast into a less divergent form 

y[+:T,A’] =$a(i~-M+e&‘)+~+~.2(A’~)2-$(3 A’ 
P ” 

- a”A;)2 

- & (apA;) , (3.9) 

where (2 is an arbitrary parameter characterizing the gauge. Within 

the Stuckelberg formalism a massive vector field is regarded as a 

genuine gauge field and the Lagrangians (3.6) and (3.9) simply correspond 

to two different choices of the gauge condition. One can pass from (A ,$I) 
tJ 
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to (AL, 4) by certain field redefinition or nonlinear gauge transformations. 
26 

The renormalization transformation for the theory of the form (3.9) is 

given by 

4J ‘a = (X,)+ J1’R” , A’p = (X,,+ A$ 
-+ 

e = (Xe/X+)XA eR , 

2 -1 2 
K =xA KR’ a = XA aR, etc. (3.10) 

Here again the WT identity Xe =X+ holds. The bare parameters 

e, K,M are common to both Lagrangians (3.6) and (3.9). In the on-mass- 

shell renormalization scheme, the renormalized parameters e 
R’ ‘R 

and M 
R 

also are common to both Lagrangians (because they are physical 

parameters defined on the mass shell). Therefore ZA =XA and, the 

compositeness condition Z 
A 

= 0 in the Proca form of the theory is 

replaced by 

(3.11) 

in the new form (3.9) of the theory. In this new form the neutral vector- 

meson theory is super-renormalizable under four dimensions: X 
A 

and 

Xe =X4 are finite. The IGUe’n-Lehmann bound 0 cXA<l holdsZ2 in 

quantum electrodynamics as well as the neutral vector-meson theory; 

hence, the XA = 0 condition is solvable to each order in 1 /N. To lowest 

order in 1/N, XA =O leads to expressions (2.15) - (2.18) with gi 

replaced by 2ek. Hence, within the 1/N expansion scheme, the Abelisn 

vector four-fermion theory (3.4) is equivalent to the neutral vector-meson 
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theory with a composite vector meson and is a renormalizable and 

well-defined field theory under four dimensions. Note that, unlike the 

previous case, the four-fermion coupling constant E =e2/K2 =ei/Ki 

remains unrenormalized. 

We have arrived at the final form (3.9) via the Proca form. Let 

us examine whether we can get to (3.9) directly from (3.5). After the 

renormalization transformation (3.10); the last two terms of the 

Lagrangian (3.9) are written as 

~NJ’.~“.A’I=...-~x (a A’ -a A’)‘-X 
4 A fiv v lrR 

(3.12) 

where we have defined (I R by the more general resealing (1 =X -lXAIXR 
a 

instead of the last one in (3.10). If one can restrict renormalized 

parameters oR, gR, mR etc. so that XA = Xo = 0, this theory is reduced 

directly to the four-fermion theory. However, Xa = 0 cannot be a con- 

straint on LY 
R’ 

In fact, the zeroth-order i/N quantum fluctuations come 

from a single-fermion-loop diagram which is independent of aR; hence, 

Xa = 1 to this order and one cannot set Xo = 0. (In higher orders, X = 0 
(2 

may be solvable but then Q R is no longer zeroth order in 1 /N. ) This 

implies that the direct transition from (3.12) to the four-fermion theory 

is impossible. This is the reason why one has to pass from the Proca 

form to the final form (3.9) by means of the field redefinition. 
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It is simple to include an internal symmetry into the vector four- 

fermion theory. For definiteness, we consider the following O(N) X SU(2) 

vector interaction 

y[‘JZ,z] =Fa.(ifi-M)@a-l 2 E (Fa* ‘$ T(~) ua) 
2 

, 

where Q?‘(x) = {+F (x)} (a = 1 ,..., N and i= i, 2) is. as before, an SU(2) 

2 2. 
doublet, and E=e /K is of order i/N. As in the Abelisn case, within 

the 1 /N expansion, an equivalent composite-particle theory is given by 

the following O(N) X SU(2) massive Yang-Mills theory 

y[*,T,A] =Ta.(ifi-M+e$(k)~(k) )~a++2~;-~(~pV[A])2 , (3.14) 

with zrv[A] = aWxV - aV7ir+e xpX TV , where A’ (x) = {A(k)(~)} is an 
P P 

O(N)-singlet, SU(2)-triplet vector field (k = 1,2,3). The gauge- 

invariant kinetic term (Fp”[A]) 2 is to be produced by the quantum 

fluctuations of ‘I! and 5 of the gauge-invariant form 5 * (ip -M+e$(k)r(k))~. 

The compositeness condition is 

ZA = 0. (3.15) 

Renormalized fields and parameters are defined by the same resealing 

as in (3.8). The absence of the vector-meson mass renormalization and 

the relation Ze = Z 
9 

in the on-mass-shell renormalization scheme again 

follow from the WT identities. Unfortunately, in the Proca form the 
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massive Yang-Mills theory appears nonrenormalizable by power- 

counting in two dimensions. 

The massive Yang-Mills theory can be regarded as a spontaneously- 

broken gauge theory where the Higgs field is realized nonlinearly. ‘~I 

To see this let us consider the Yang-Mills field coupled to the SU(2) 

nonlinear c model 

po[Q,7&A,?r] = Ta * (ifl-M+e8((k)7(k))Qa 

+$ Tr [( gp[A1d)’ ( ,B’[AlJ)] * (3.16) 

where Mis the (2 X 2)-matrix field A(x) = u.(x) 1+ i in (Wcx) I (k=i,2,3) 

subject to the constraint J&P= [c2 + (n (k))2] 1 = (4 K2/e2) 1, i.e. 

2 (4 o(x) =(2K/e)[l -(e/ZK) (n (x))‘$ and m?p[4 is the covariant 

derivative Bp[A] = ap+ $ ie-r(k)A(pk). Here the SU(2)-triplet field 

$k) (x) is the Higgs field. If we choose the gauge condition ?r (k) z. 

(k = 1,2,3), this theory is reduced to the Proca theory (3.14). In the 

standard gauge characterized by the effective Lagrangian 

ye,, = $P,[*,T,A,x] - & (a’l;iW)2 + (ghost term), (3.17) 
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where the last term contains the Faddeev-Popov ghost fields, the theory 

turns out 
27 

renormalizable in two dimensions (although the Lagrangian 

(3.17) is nonpolynomial in TT (W ). In this gauge, we use the following 

resealing 

(0. Jk)) = (XT,+ (0, rr(k))R, @ = (X,)+ \kR, A’ = (X,)+ Ap 
R 

e = (Xe/XG)Xiw eR, K’ = XK XT Xii K: ~ etc. : (3.18) 

Only XV and XK are ultraviolet divergent in two dimensions. By the 

same argument as before, the compositeness condition ZA =0 in the 

Proca gauge (3.14) is translated into 

ZA =xA(xJxe)2 = 0 , (3.19) 

in the renormalizable gauge (3.17). [Due to the ghost-field contribution, 

XQ + Xe in general. ] To zeroth order in i/N, Xe =X* = 1 and XA is 

calculated from the same one-fermion-loop diagram as in the Abelisn 

case, apart from the overall group factor. Hence the compositeness 

condition (3.19) is solvable in the i/N expansion; to zeroth order in 

1 /N, (3.19) leads to expressions (2.15) - (2.18) with gi replaced by 4e2 
R’ 

Thus, within the 1 /N expansion, the non-Ableian vector four-fermion 

theory (3.13) is identical to the massive Yang-Mills theory with composite 

massive Yang-Mills fields and becomes renormalizable in two dimensions. 
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Dynamical structures of some bosonic theories are also made 

explicit by the construction of equivalent composite-particle theories. 

For example, the CP N-l 
model, which has recently been studied 19 in 

connection with instanton effects, can be converted into sn O(N)XU(i) 

nonlinear o model coupled to a U(1) composite vector-meson in the i/N 

expansion. It is known 
16 

that the O(N) nonlinear d model has two 

different phases in n = 2 + E dimensions (E > 0) in the large-N limit: a 

weak-coupling massless phase where the O(N) symmetry is spontane- 

ously broken down to O(N-1) and a strong-coupling massive phase where 

the full O(N) symmetry is restored with the occurrence of a scalar 

bound state; only the latter symmetric phase exists in two dimensions. 

Correspondingly, in the symmetric phase, the composite vector-meson 

of the CP 
N-l 

model becomes a massless bound-state 2a (when the 

instanton effects are neglected). In the broken-symmetry phase, however, 

the compositeness condition is not solvable on the mass shell; this is 

because the vector meson, which is massive in this phase, is unstable, 

decaying into (N-i) Goldstone bosons. 
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IV. CONCLUDING REMARKS 

We have studied, for a wide class of nonlinear field theories, the 

construction of equivalent field theories in the framework of the i/N 

expansion. The particle spectrum and the renormalizability of those 

theories are made explicit in their equivalent field theories. It is 

interesting to observe that with the formation of bound states nonlinear 

field theories become better-behaved at short distances. 

The construction of the theory of composite particles through 

the compositeness condition will be a general theoretical framework, 

not restricted to the i/N expansion or some other particular calcu- 

lational schemes. In the presence of some phenomenological ultra- 

violet cutoff, even four-dimensional four-fermion interactions can 

effectively be converted into equivalent Yukawa-like interactions. 
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Quantum correction to the 0 -field propagator 

to zeroth order in 1 /N. 



\cI 

CT 

0 

-- -- u 

Fig. 1 


